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Superposition of Multiple Inputs
0t 1 Set all puts et one equal to 2,

Step % Transorm the ok dagram t canoicl fom, using the tansormations of Secon 1
Mt 3 Calelate the respon due 1 (e cosen mp actng dlone
Step & Repeat tps 1103 forcach of e emarng input

lepS Alevaially add allf e resones oupu) Gt Sps (04 Ths um s
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Example-15;: Multiple Input System. Determine the
output C due to inputs R and U using the
Superposition Method.

U

R +() G‘ ¥ G2 T —

Step 1: Put U=0.
Step 2: The system reduces to

C
R + G,G, ‘ R

Step 3: the output Cy due to input R is[CR =[G,G,/(1 + GG, }]R]
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Stepda:  Put R=0.

Step4b:  Put —1 into a block, representing the negative feedback effect:

Rearrange the block diagram:

Let the — 1 block be absorbed into the summing point:

Step dc: the output C,; due to input U is[CU =[G, /(1 + GIG!)]U.]

Cvy
-1 -
U _+ M\ o G, Cv
+
_’1 - Gl
U + 7\ J 6, Cy
G, I
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Step 5:  The total output is C=Cy + Cp,

GG, G,
R+ U
1+ G,G, 1+ G,G,

G,
= G R+ U
[1+GIGJ[ ! |
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Example-16: Multiple-Input System. Determine the
output C due to inputs R, U, and U, using the
Superposition Method,

i

"Nt S
+
H, M\ + 5l
T
U2
LET.U‘=LE=U R +ﬂ CR

” GlG’ >
\ﬁ_ ——I
‘ HIHQ

[ Co =G,Go/(1 ~ G,G, Hy H)) R ]

where Cj, is the output due to R acting alone.
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Now let R= U}, =0, _;I\Ux
o G l + G’ Cl

Rearranging the blocks, we get
U 1 +

[ C] = [Gz {1 - GIGEHIHE}]UI ]

where C, is the response due to U, acting alone.
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J e, | C2
Finally, let R = U, =0. e
Ca | ' - &
— T
+
U,

Rearranging the blocks, we get

L O— oo | —
+
H l
Lzt

[q - (G\G, H, /(1 — G,G, H, H, )]Uz]

where G, is the response due to U, acting alone.

By superposition, the total output is

G].GE R + GgUl + G]G‘J HILFZ}

[C-CR+C1+CZ= l-—GlGEHLHZ
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Example-17:  Multi-Input  Multi-Output  System.
Determine C, and C, due to R, and R,.

R, + 7\ J ¢ C,
LS i e l =
G, |
e 3 G; __1
A
R C
3 +:O —s Gy 2,

First ignoring the output C,.

R, + 7\ G, C,

+ ———— e

R,
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R, +

Hence C,,, the output at C; due to R, alone, is[C‘11 =G, R, /(1 - 61626364}]

For R, =0, M ¥ - -G:GaGA} S

H'E'DC'E [C'IE = - GIGJG“_RI/(I - GIGIG:;Gd)]iS t.hﬂ ﬂutpl.lt at Cl dllE tﬂ Rz a]onﬁ.

Thux[Cl =C,y + Ciy= (GR, — G,GsG4R,)/(1 — G.G:Gﬁ..,ﬂ
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Now we reduce the original block diagram, ignoring output C;.

R, ‘*;f\ -‘ G, l Cz:
| | P et
G,G G
RS AN
R,
When R1=0, R, + G
‘ J
| G,G4G; Hence Cz Gy R,/(1 — GIGzGﬁaJ]
When R2=0, R, 4 N I ] Car

G’ | HEHCE [CZI = = 616264 .Rl‘f(]. = 61626364 }]

Fi“«'ﬂ]l}%[ =Cn+ Gy = (GyR, — G,GyGyR,)/(1 — GIGEG]Gd}]
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Skill Assessment Exercise:

PROBLEM: Find the equivalent transfer function, 7(s) = C(s)/R(s), for the system

| Ci(s)

. 4+ -
—_— % —_— - A - L) 4>®——- 5 -
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Answer of Skill Assessment Exercise:

s+ 1
ANSWER:  7'(s) =5~
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Signal-flow Graph Components g

a, system;
b, signal;
c., interconnection of systems and signals

Ry(s) Cy(s)
G(s) Gy(s)
—Gs(s) Gs(s)
Ry(s) O A > O Cy(s)
G3(s) s) NLGo(s)
G(s)
- O R5(s) C5(s)

V(s)

(a) (b) (c)
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a, Cascaded system nedes w0 o o 0w wo—o=—o~ou

b, Cascaded system - o

signal-flow graph; i

C, Parallel system nodes i

d, Parallel system signal- «o o o«

floy graph; ;

e, Feedback system . ‘*
nodes ! i

f.  Feedback  system .. o oo soto® o

signal-flow graph BN

() (f)
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> Converting a Block Diagram to a P

Signal-flow Graph
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> Converting a Block Diagram to a <

Signal-flow Grap

Signal-flow graph

Ve(s) V7(s) Ve(s)

development:

1
ignal nod
[ J
a [} S] g n a n O e S ’ 1 Gi(s) 1 Gr(s) 1 G3(s)
R(s) O O O @ C(s)
Vi(s) Va(s) V3(s) Va(s) Vs(s)
- -1 H3(s)
K

b. signal-flow
graph;

®)

C. simplified
Si g n a l B flow e - f\Vl(S) - V3(s) = AV4(S)1 Vs(s)CiS)j‘ -
graph

—Hi(s)
(c)



PP  Mason’s Rule - Definitions -

Ge(s)

Gi(s) _ Ga(s) _ Gs(s) _ Gals) @ G(s)
R(s) O—»—O—>—)—» {( —w - () C(s)
WVM) ns) Jraes) )

Hi(s)

H;(s)

Loop gain “L,” The product of branch gains found by traversing a
path that starts at a node and ends at the same node, following the
direction of the signal flow, without passing through any other node
more than once. G,(s)H(s), G,(s)H,(s), G,(S)Gs(s)Hs(s),
G,(8)Ge(s)H3(s)

Forward-path gain “P,”: The product of gains found by traversing a
path from input node to output node in the direction of signal flow.

G1(S)G2(S)G3(8)G4(S)Gs(S)G(S), G1(S)G,(S)G3(S)G4(S)Ge(S)G(S)
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PP Mason’s Rule - Definitions -

Ge(s)

Gi(s) _ Ga(s) _ Gs(s) _ Gals) @ G(s)
R(s) O—»—O—>—)—» {( —w - () C(s)
WVM) ns) Jraes) )

Hi(s)

H;(s)

Nontouching loops: loops that do not have any nodes In
common. G,(s)H,(s) does not touch G,(s)H,(s),
G,(S)Gs(S)H3(s), and G,4(s)Gg(s)H;(S)

Nontouching-loop gain: The product of loop gains from
nontouching loops taken 2, 3,4, or more at a time.
[Go(S)Hy(S)I[G4(S)Hy(S)],  [Ga(S)H,(S)I[G4(S)Gs(S)Ha(S)].

[G2(S)H1(S)I[G4(3)Ge(S) HSSZISS.Z(])ciate Prof. Or. Mohamed Afimed Ebrakim
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The Transfer function. C(s)/ R(s), of a system represented by a signal-
flow graph is

_C(s) Xy Pl
~R(s) A

G(s)

Where

K = number of forward paths
P, = the ki forward-path gain

A =1- Zloop gains +), nontouching-loop gains taken 2 at a time - X,

nontouching-loop gains taken 3 at a time + ), nontouching-loop gains taken 4
at a time - ...... !

A, = 1 -loop gain terms that does not touch the kth forward path.
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PP | Transfer Function via Mason’s Rule | g

Problem: Find the transfer function for the signal flow graph

fSqution: O Gis)  Gls) Gl Gals)  Gslo) -
g - - o - - A

orward path Vi) Va(s) Vy(s) Vi(s)

G41(S)G,(S)G3(s)G4(s)Gs(S)

Loop gains

H(s)

G,(S)H1(S), G,(S)H,(S), G(S)H,(S),
G,(8)G3(S)G4(S)Gs(S)G(S)Gg(S)
Nontouching loops
2 at atime
G,(S)H(S)G4(s)H,(s)
G,(S)H(S)G(S)H,(s)
G4(S)HL(S)G(S)H,(S)
3 at atime G,(s)H,(S)G4(S)H,(S)G,(S)H,(S) Hyls)
Now

A = 1-[Go(S)H1(S)+G4(S)H(S)+G(S)H4(S)+ Go(S)G3(S)G4(S)Gs(S)G(S)Gg(S)] +
[Go(S)H1(S)G4(S)H,(S) + G,(S)H (S)G(S)HA(S) + G4(S)HL(S)G7(S)H,(S)] —
[G2(S)H1(S)G4(s)H,(S)G(S)H,(S)]

A, =1-G7(s)H4(s)
PiAy [G1(5)62(3)G3(3)i34(3)65(5)][1‘G7(S)H4(S)]
A A Associate Prof. Dr. Mohamed Afmed Ebrahim

Ge(s)

G(s) =




Signal-Flow Graphs of State Equations

o 1 - e R(s) O O O O O O O O ()
Problem: draw signal-flow graph for:“>< = S o, 5 .o, 5

X3()
M (@)
X, =2X,; —5X, +3X 53 +2r 1 1 1
R(s)O O——0 O——0 O——0O O ¥s)
M §X 3(.\-) _,\’_‘(,\v) s X 2(.\') -"‘"2("') s.X ](.\') _,\-’] (s)
X, =—6X,;, —2X, +2X 5, +5r ®)
[l

Xz =X, _3X2 —4X3 + 7r
y =—4X, +6X, +9X,
a, place nodes;

b. interconnect state variables and

derivatives;
c, form dx1/dt ;
d, form dx2/dt

R(s)
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Signal-Flow Graphs of State Equations

(continued)
e, form dx, /dt;
f. form output

Assc



PP | Modeling in the Time Domain - State-Space g

Mathematical Models

1- Classical or frequency-domain technique

2- State-Space or Modern or Time-Domain
technique



g | Classical or Frequency-Domain Technique | g

* Advantages *Disadvantages
- Converts differential - Applicable only to
equation into algebraic Linear, Time-Invariant
equation via transfer (LT1) systems or their
functions. close approximations.

- Rapidly provides ——
I ] LTI limitation became a
Stablllty & transient problem circa 1960 when

space applications

response info. became important.




State-Space or Modern or Time-Domain <

Technique .

*Advantages *Disadvantages

- Provides a unified D
method for modeling, - Not as Intuitive as

analyzing, and classical method.
designing a wide range _Calculations
grgse%srtgms using matrix required before

- Nonlinear, Time- physical

Varying, Multivariable Interpretation Is
systems apparent



An LTI system is represented in state-space format by the
vector-matrix differential equation (DE) as:

X(t) = Ax(t) + Bu(t)  Dynamic equation (s)
X(t) = CX(t) + Du(t)  Measurement equations
with t > t, and initial conditions x(t,).

The vectors X, y, and u are the state, output and input

vectors.
The matrices A, B, C, and D are the system, input,

output, and feedforward matrices.
Associate Prof. Dr. Mohamed Ahmed Ebrahim
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*System variables: Any variable that
responds to an input or initial conditions.

“State variables: The smallest set of
linearly independent system variables such
that the initial condition set and applied
inputs completely determine the future
behavior of the set.

Linear Independence: A set of variables is linearly independent if
none of the variables can be written as a linear combination of the
others.

Associate Prof. Dr. Mohamed Ahmed Ebrahim
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*State vector: An (n x 1) column vector
whose elements are the state variables.

*State space: The n-dimensional space
whose axes are the state variables.

State space

Graphic representation
of state space
ate vector, x() and a state vector

or trajectory

wn wn n
- - -t
I

ate vector, x(4)

Associate Prof. Dr. Mohamed Ahmed Ebrahim



‘ The minimum number of state variables is equal to:

*The order of the DE’s describing the
system.

*The order of the denominator
polynomial of its transfer function
model.

*The number of independent energy
storage elements in the system.

Remember the state variables must be linearly independent! If not, you
may not be able to solve for all the other system variables, or even write
the state equations.

Associate ‘£'rof. ‘Dr . Mohamea Ahmea ‘L.orahnim



Dynamic equation

X(t) =

%X(t) = Ax(t) + Bu(t) | State equation

y(t) = Cx(t) + Du(t)

State variable

1
X0,

X, (t)

_Xn.(t)_

nx1

State space

nxn

u(t) =

I-

U (t) |
u, (t)

nxr

_Ur.(t)_

input

rx1

y(t) =

Y (1) ]
Y, (t)

Y, (L)

p- output

pxn

Output equation

px1

X(0) =

 %(0) ]
X,(0)

pXxr

| X,(0)_

nx1



u (t)
u, (t)

u (t)

Y, (t)
Y, (t)

y,(t)

X(

t) PR
+ '. ]

F-

u (t) + o X(t)
:. =,

;



Dynamical equation |:> Transfer function

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Laplace transfor

sX(s)—x(0) = AX(s)+BU(s)
Y (s) =CX(s)+ DU(s)

assume x(0)=0
X (s)= (sl —A)'BU(s)
Y (s)=[C(sl = A) "B+ DJU (s)

/ matrix
Transfer function



Example

let

(

Y1

OZ‘HO
-

Y,
I K A\
M, M, i (t)
B, B, B,
Mlyl + BlYl + Bz(S’1 o yz) + K(Yl o yz) - f(t)
szz + BsYz + Bz(Yz — Y1)+ K(Yz — yl) =0
—y — 1| o 1 i e
X =Y | Y, :1 K (B,+B,) B, :1 )
X =Y, > | 7? _M—l - M, M—1 i
X3 =Y, Gl K B (B+By
MZ MZ ]

2

f (1)



Armature circuit

)] Field circuit
m
J TL
. - T —ki,
I a
e, (t) =R, +¢ +L, dt d%0, do._
di, -R, K, 1 do, k B_do. 1
= |a——0)m+—ea - Ia_ _ TL
. at  J, * J, dt J,
do




_Ra _Kb O
_I. | La La _i l
a K B A
D | = — L @, |t 0
J. J.
Ol | 0 1 ol

@] [0, ] [0 0
Y1) |e.t)] [0 1 0



Example

By Newton's Law

LLLLL L LS F =My = My+by+ky=r
g r—ky—by=my let X =Y, % =Y
o L
M T 1~ — N2
7| R e L NN
(1), y(t) SN VR VRN
" =—% ) —x1+iu (u=r)
X, = X,
r:external force = %, = _L X, X, +—u
k:spring M

b: coef ficient of viscous friction |:X } 0 1
1
=




State Space Equation

)'(1 0 1 Xl O
% — Ax + BU For example : {x}: kb {X}+ 1w
2 M M L2 M

y =Cx+ Du
Xl
y=[1 O]{X }+O-u

2

Transfer Function

G(s) = Y(s) For example : G(s) = ;s + b

U (s) a,s’ +as+a,

Example: Transfer function of the Mass-damper-spring system
d?y
dt?
Ms?Y (s) + bsY(s) + kY (s) =U (s)
Y (s) G(s)=— 1

U (s) Ms® + bs+k

M

dy _
+bdt+ky—u(t) x=[x1 XZ]T




Example | [0 1 0 fx
X, =l 0 =4 3 | X |+
X, -1 -1 -2 X,
MIMO system s SR
_ _ X
n®]_[1 0 0]
y,(t)| |0 0 1] 3
L ] X, |
(sl — A" = adj(sl - A)
sI—A
52 +65+11
. 1 ~3
4 2)+3+3
s(s+4)(s+2)+3+3s i

G(s)=[C(sl = A) "B+ D]
B 1 S+2 3
24652 +4115+3| —(s+1)  s(s+4)

S+2 3
$% +2 3s
—s—1 s°+4s

} Transfer function



As another example of the state variable characterization of a
system, consider the RLC circuit shown in the following figure.

The state of this system can
be described in terms of a set
i of variables [x; X,], where Xx;

i l L Is the _capacitor volta_ge V(1)
u(t) v ¥ R v and x, IS equal to the m_ductor

Ve current i (t). This choice of
state variables is intuitively
satisfactory = because the
stored energy of the network
can be described in terms of
these variables.

Current
source




Therefore x,(t;) and Xx,(t,) represent the total initial energy of the network and
thus the state of the system at t=t,.

Utilizing Kirchhoff’'s current low at the junction, we obtain a first order
differential equation by describing the rate of change of capacitor voltage

i —c
dt

Kirchhoff's voltage low for the right-hand loop provides the equation describing
the rate of change of inducator current as

=u(t)—1_

LI - _Ri 4,
dt

The output of the system is represented by the linear algebraic equation

Vo =R (1)



We can write the equations as a set of two first order differential equations in
terms of the state variables x, [v(t)] and X, [i, ()] as follows:

dv : d 1 1
C—C =u(t)—i X, 4 4
LE__RIL +VC = > dt I_ 1 I_ 2

The output signal is then Y, (t) =V, (1) =R X,

Utilizing the first-order differential equations and the initial conditions of the
network represented by [x,(t;) X,(t)], we can determine the system’s future
and its output.

The state variables that describe a system are not a unique set, and several
alternative sets of state variables can be chosen. For the RLC circuit, we
might choose the set of state variables as the two voltages, v(t) and v(t).



In an actual system, there are several choices of a set of state variables that
specify the energy stored in a system and therefore adequately describe the
dynamics of the system.

The state variables of a system characterize the dynamic behavior of a
system. The engineer’s interest is primarily in physical, where the variables
are voltages, currents, velocities, positions, pressures, temperatures, and
similar physical variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential
equations written in terms of the state variables [x; X, ... X,]. These first-
order differential equations can be written in general form as

X, =a, X, +a,X, +...8,, X, +b, U, +---b, U

Im™m

2m>—"m

X, =8, X, +a,,X, +...8,, X, +b,,Uu;, +---b, U

X, =a,X,+a.,X,+...a, X, +b U, +---b_u_



Thus, this set of simultaneous differential equations can be written in matrix
form as follows:

X1 d;; Ay oo Ay X1 B b b ar =
9N 1m U,
d| X, N Ay Gyttt oy || Xy . .
a =\ . ) +
b b u
| Mn1 nm_| Y m_]
_Xn_ _anl A, v ann_ _Xn_

n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state vector
and is written as




The vector of input signals is defined as u. Then the system can be
represented by the compact notation of the state differential equation as

X=AX+BuU

This differential equation is also commonly called the state equation. The
matrix A is an nxn square matrix, and B is an nxm matrix. The state differential
equation relates the rate of change of the state of the system to the state of the
system and the input signals. In general, the outputs of a linear system can be
related to the state variables and the input signals by the output equation

y=CXx+Du

Where y is the set of output signals expressed in column vector form. The
state-space representation (or state-variable representation) is comprised of
the state variable differential equation and the output equation.



We can write the state variable differential equation for the RLC circuit as

0 —% 1
X = 1 R X+ C
AL 0
L L _ .
and the output as
y=[0 R]x

u(t)

The solution of the state differential equation can be obtained in a manner
similar to the approach we utilize for solving a first order differential equation.

Consider the first-order differential equation

X =axX +bu

Where x(t) and u(t) are scalar functions of time. We expect an exponential
solution of the form e Taking the Laplace transform of both sides, we have



sX(s)—X%X, =aX(s)+bU(s)

therefore,

X (0) N b
Ss—a S-—a

X(S) = U(s)

The inverse Laplace transform of X(s) results in the solution

t
X (t) = e*x(0) + j e*™pu(r)dr
0

We expect the solution of the state differential equation to be similar to x(t)
and to be of differential form. The matrix exponential function is defined
as

242 kK
A TN S L L
2! K!

+ ...



which converges for all finite t and any A. Then the solution of the state
differential equation is found to be

t
X (1) = e”'x(0) + j eAIB (1) dr
0

X(s) = [sl-A["x(0) +[s1-A]'BU(s)

where we note that [sI-A]1=¢(s), which is the Laplace transform of ¢(t)=eA.
The matrix exponential function ¢(t) describes the unforced response of
the system and is called the fundamental or state transition matrix.

X (t) = (1) X(0) + j o(t—t)Bu(r)dt



THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be
obtained from the state variable equations.

X=AX+BuU
y=CX

where vy is the single output and u is the single input. The Laplace transform
of the equations

sX(s) = AX(s)+BU(s)
Y (s) = CX(s)

where B is an nx1 matrix, since u is a single input. We do not include initial
conditions, since we seek the transfer function. Reordering the equation



[sI—A]X(s) =BU(s)
X(s) =[sl - A]'BU(s) = ¢(s)BU(s)
Y (s) =Co(s)BU(s)

Therefore, the transfer function G(s)=Y(s)/U(s) is

G(s) =Co(s)B

Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described
by the state differential function

X+

o+
c
<
I
=)
2
X

|00+

0
B
Nl



L d(s) =[s1-A]" =
si-Al=) , C
—— S+— 1
L L L. A(S) =8° +—S+—
LC

Then the transfer function is

R
s+E s
G(s)=[0 R] A(s) CA(5)
1 oA
LA(S) A(S)
(S):R/LC: R/LC
A) g2, R, 1
LC

— |7

|~

o0 |+




Remark : the choice of states is not unique.

T
ei(f) i(t)) c e-c(t) Ri(t)+ L :j(t) + 1] 1(t)dt = e, (t)

X, (t) = i(t) {)ﬂ{_i ‘i}{xl}{qe,(t)
txz(t):ji(t)dt =) ) [ 1 0 ] |0
y(t) = i(t) y(t) =1 0]{:}
g (t) =i(t) YA ANE
% (t) =i(t ol LM T e
R0 =e, (1) m— H k OH M'm
y(t) =i(t) y0 =i oﬁj

exist a mapping



ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space representation
and vice versa. The function tf can be used to convert a state-space
representation to a transfer function representation; the function SS can be used
to convert a transfer function representation to a state-space representation. The

functions are shown in Figure 4, where sys_tf represents a transfer function model
and sys_ss is a state space representation.
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The ss function

Linear system model conversion



For instance, consider the third-order system

Y(s)  2s°+8s+6

G(s) = =
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We can obtain a state-space representation using the ss function. The state-
space representation of the system given by G(s) is

Transfer function:
Matlab code ST ey
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Continuous-time model.
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Block diagram with x, defined as the leftmost state variable.



t
X (t) = e”'x(0) + j e OB u(t)dr
0

x (1) = d(t) X (0) + jq)(t _7)Bu(r)dt

We can use the function expm to compute the transition matrix for a given
time. The expm(A) function computes the matrix exponential. By contrast the
exp(A) function calculates e?; for each of the elements a;eA.

For the RLC network, the state-space representation is given as:

A=l 7% B=|? ,C=[1 0]and D=[0]
1 -3 0

The initial conditions are x,(0)=x,(0)=1 and the input u(t)=0. At t=0.2, the state
transition matrix is calculated as Phi =

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt) 0.9671 -0.2968
0.1484 0.5219



The state at t=0.2 is predicted by the state transition method to be

x, ]  [0.9671 -0.2968][x,| [0.6703
X,| . 101484 05219 ||x,| . |0.6703

t=0.2 t=0

The time response of a system can also be obtained by using Isim
function. The Isim function can accept as input nonzero initial conditions
as well as an input function. Using Isim function, we can calculate the
response for the RLC network as shown below.

u(t) System y(t)
Arbitrary Input| X =AX +BuU | Output

—
y =Cx+Du

»
»

t

t=times at which
y(t)=output response at t response is
computed

Initial conditions
T: time vector

(optional)

X(t)=state response at t
\ u=input /
\

[y, T,x]=Isim(sys,u,t,x0)




Matlab code

clc;clear
A=[0 -2;1 -3];B=[2,;0];C=[1 O];D=[0];
sys=ss(A,B,C,D) %state-space model
X0=[1 1]; %initial conditions
t=[0:0.01:1];

u=0*t; %zero input

[y, T,x]=Isim(sys,u,t,x0);
subplot(211),plot(T,x(:,1))
xlabel('Time (seconds)’),ylabel('X_1")
subplot(212),plot(T,x(:,2))
xlabel('Time (seconds)’),ylabel('X 2"

u=3*t
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